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ABSTRACT
Deep neural networks have been shown to perform very well
as acoustic models for automatic speech recognition. Com-
pared to Gaussian mixtures however, they tend to be very
expensive computationally, making them challenging to use
in real-time applications. One key advantage of such neural
networks is their ability to learn from very long observation
windows going up to 400 ms. Given this very long temporal
context, it is tempting to wonder whether one can run neural
networks at a lower frame rate than the typical 10 ms, and
whether there might be computational benefits to doing so.
This paper describes a method of tying the neural network pa-
rameters over time which achieves comparable performance
to the typical frame-synchronous model, while achieving up
to a 4X reduction in the computational cost of the neural net-
work activations.

Index Terms— deep neural networks, acoustic modeling

1. INTRODUCTION

Deep neural networks (DNNs) have become increasingly
popular for acoustic modeling [1]. They make it possible to
effectively use many more parameters than typical Gaussian
mixture models (GMMs) in several ways:

1. use a large number of shared parameters across states:
while GMM parameters are only exercised when their
associated state is active, DNN parameters up to the last
hidden layers are shared across all states [2],

2. use wider windows of context: while GMM systems
rarely benefit from using more than 10 frames (100 ms)
of context around the central frame, DNNs benefit from
20 (200 ms) and up to 40 (400 ms),

3. use a larger number of output states: it has been ob-
served that DNN systems can typically take advantage
of a much larger number of output states than compa-
rable GMM systems.

The larger number of parameters that need to be evaluated
at every frame has the disadvantage of making real-time in-
ference more computationally challenging. There are several
ways to mitigate this problem. One is to use GPUs, which are
very effective at handling large matrix computations. Another

approach is to quantize the networks and use fixed-point com-
putations [3]. Another is to distribute the computation across
multiple cores, or even machines [4]. To go beyond that, one
might have to consider limiting the size of the networks or
exploring alternative architectures.

This paper introduces another approach which takes ad-
vantage of the stationarity of the speech signal, and ties neu-
ral network parameters across frames, enabling the acoustic
model to be run at a reduced frame rate. Rather than separat-
ing the model description from the experiments, we will use
the experiments to guide the rationale behind the approach:
Section 2 describes the baseline system and shows the per-
formance/complexity tradeoff of a typical frame-synchronous
acoustic model. Section 3 describes a simple asynchronous
approach which performs remarkably well. Section 4 intro-
duces the proposed method, and shows that it compares ad-
vantageously to both baselines in terms of accuracy and com-
plexity. Section 5 demonstrates the speedups that can be ob-
tained using this technique.

2. HYBRID DEEP NEURAL NETWORK SYSTEM
AND COMPUTATIONAL COMPLEXITY
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Fig. 1. Error rate against complexity of neural network acous-
tic models for US English, trained on thousands of hours of
data, and Iberian Portuguese, trained on 100 hours of data.



For extensive background, a general introduction to hy-
brid DNN systems can be found in [1]. The goal of this pa-
per is to look at the complexity/accuracy tradeoff of such a
system. To explore this tradeoff, we trained a collection of
systems of various complexities on two datasets: US English
Voice Search [5] and voice typing, and Iberian Portuguese
Voice Search, by varying the width of the hidden layers of
the DNN acoustic model. The rest of the system was kept
fixed: the frontend consists of 40 log-filterbank energies com-
puted every 10 ms, stacked 20 frames in the past and 5 frames
in the future to limit latency. The DNNs all have 3 hidden
layers, sigmoid activations and 7969 softmax output classes
for English (2960 for Portuguese), which are the leaves of
a state-tying decision tree. They were trained using a dis-
tributed neural network infrastructure [4] using AdaGrad [6]
and asynchronous parameter updates. The training data con-
sists of more than 3000 hours of speech for English and ap-
proximately 100 hours for Portuguese. The evaluation is per-
formed on 27327 held out utterances for English (11901 for
Portuguese), using a fixed large-vocabulary language model.
There are arguably many ways to sweep the algorithmic com-
plexity of a system, and varying the width of the hidden lay-
ers is but one of them. Nevertheless, we find that this is an
effective way to span a wide range of complexities without
departing too far from the optimal operating point. Figure 1
shows how the word error rate of the evaluation set changes
as we sweep the number of hidden nodes between 160 and
896 nodes per layer. Each datapoint corresponds to a dou-
bling of the number of hidden parameters. It is evident from
the graph that the performance falls off rapidly as the number
of parameters decreases. The question is: can we do better?
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Fig. 2. Frame synchronous baseline approach: each acoustic
model input is a window of multiple feature frames, shifted
by one frame (10 ms) over time. A prediction is issued every
input frame synchronously.

3. FRAME ASYNCHRONOUS MODEL
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Fig. 3. Frame asynchronous approach, in the case of an acous-
tic model running at half the frame rate of the feature stream.
Predictions are simply copied every other frame.

Speech is a rather stationary process when analyzed at a
10 ms frame rate. A much wider window of time (e.g. 275
ms in our experiments) is used to make a frame classifica-
tion decision. The traditional approach is depicted in Figure
2: overlapping stacked frames are passed to the neural net-
work to issue a prediction synchronously at every frame. It
is natural to wonder whether one could simply use the pre-
dictions at time t − K, k = 1, 2, . . . to issue a prediction at
time t. There are many models that attempt to take advan-
tage of time correlations between feature frames. A naı̈ve,
but computationally inexpensive approach is to simply copy
the predictions from previous frames as depicted in Figure 3.
Since the alignments used to train the networks are inherently
noisy, one can expect the neural networks to be very robust
to alignments being off by several frames. This works sur-
prisingly well, as illustrated in Figure 4: the graph depicts
the performance of systems running the acoustic model at
1/2 and 1/4 the frame rate compared to frame-synchronous
models of the same complexity. The approach is not novel,
it has been used in GMM/HMM systems to trade off perfor-
mance against speed, including more sophisticated variable-
rate schemes [7, 8]. It is nonetheless interesting to note how
well it performs in the context of a DNN on a very large
task, and better so as the acoustic model and training data get
larger. Note that because we copy the predictions for frame
t to t + 1 (or t + 1, t + 2, t + 3 respectively), the decoder
still runs at the same 10 ms frame rate in all cases. Based on
the envelope of the resulting curves, it appears to always be a
better tradeoff to oversize the network by a factor 2, and only
compute acoustic scores every 2 frames. Computing acous-
tic scores every 4 frames did yield a better operating point on
English, but not on Portuguese. Can we do even better?
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Fig. 4. Error rate against complexity of the neural network
for US English (top) and Iberian Portuguese (bottom). Frame
synchronous model complexity is controlled by doubling the
network size between data points. Frame asynchronous mod-
els have a fixed size (320, 448 or 640 nodes per layer), but are
computed every 1, 2 or 4 frames, resulting in complexities
equivalent to, 1, 1/2 or 1/4 of the frame synchronous model
complexity.

4. MULTIFRAME PREDICTION

Since the last layer of a DNN can be computed on-demand at
decoding time and scores can be batched [3], there are fewer
efficiency gains to be obtained from running the final layer
of the DNN at a lower frame-rate. This suggests that train-
ing a DNN which shares all its hidden parameters, but uses
frame-synchronous output layers might be a good tradeoff.
The resulting architecture is depicted in Figure 5: the DNN
has the same topology as our baseline system, but in addition
to a softmax regression layer that predicts the frame label at
time t, it also has an output layer trained jointly for labels
t − 1 up until t − K. In our experiments, we are looking at
prediction of frames in the past (t − 1, . . . , t − K), and not
future frames (t+1, . . . , t+K), because the reference frame
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Fig. 5. Multiframe approach, in the case of an acoustic model
running at half the frame rate of the feature stream. The neural
network is trained to issue jointly a prediction for multiple
consecutive frames.

has a much longer context window in the past (20 frames)
compared to the future (5 frames), and hence past frames are
provided a more balanced context than future frames. Note
that this means that the effective input window for these pre-
dictions is [t−20+K, t+5+K] instead of [t−20, t+5]. If
K is large, this will have an impact on the overall latency of
the system. In practice here, we will look at a worst case de-
lay increase of 30ms. Training such DNNs can be performed
by backpropagating the errors from both output layers jointly
through the network, taking into consideration that due to the
increased gradient magnitudes, the overall learning rate might
have to be reduced. One interesting implementation point is
that, for the decoder to operate in a frame-synchronous man-
ner, it needs to presented first with the predictor for time t,
followed by t−K, t−K + 1 . . ..

Table 1 compares the performance of the asynchronous
and multiframe prediction approaches. The complexity com-
parison overlooks the fact that one has more effective parame-
ters in the output layers than the other. The cost of these extra
parameters is in practice a small increment over the cost of the
rest of the model, and is very much implementation and task-
dependent. The outcome is consistent with expectations: us-
ing a frame-synchronous output layer improves performance.
What is somewhat surprising is that the performance of the
resulting system seems to consistently be as good as the base-
line system. The small performance gains against the frame-
synchronous baseline for some of the Portuguese experiments
were not found to be statistically significant. It is possible
that joint multiframe training can help regularize the training
in the presence of noisy alignments, but so far the evidence of
any such effect is inconclusive. In any case, this demonstrates
that the multiframe prediction architecture can compete with
frame-synchronous systems with far fewer parameters.



Table 1. Word error rates (%) for neural networks trained as multiframe predictors. Multiframe acoustic model’s hidden
activations are computed every 2 or 4 frames, resulting in complexities approximately equivalent to 1/2 to 1/4 of the frame
synchronous model complexity.

Nodes / layer K = 1 (baseline) K = 2 K = 4
Frame async. 640 12.8 12.9 13.3
Multiframe 640 12.8 12.9 13.3

US Frame async. 448 13.7 13.8 14.3
English Multiframe 448 13.7 13.7 13.9

Frame async. 320 14.9 15.0 15.5
Multiframe 320 14.9 14.9 15.0

Frame async. 640 22.3 22.4 22.8
Multiframe 640 22.3 22.3 22.4

Iberian Frame async. 448 22.5 22.6 23.0
Portuguese Multiframe 448 22.5 22.4 22.2

Frame async. 320 22.9 23.0 23.3
Multiframe 320 22.9 22.6 23.0

5. DECODING SPEED

We evaluated the performance of the approach on a server-
based recognizer running a 7-layer, 2000 nodes/layer US En-
glish system and a large vocabulary language model. The
system implements the multiframe architecture, but for the
purpose of benchmarking, the same output layer was used for
each time step. For a system of that size trained on a large
amount of data, the performance gain from training distinct
layers is negligible.

A system which predicts jointly 2 frames at a time
achieved a 10% improvement in the query processing rate
at no cost in accuracy or median latency, compared to an
equivalent frame synchronous system. A system which pre-
dicts jointly 4 frames achieved a further 10% improvement in
the query processing rate at a cost of a 0.4% absolute increase
in word error rate. Both multiframe systems also exhibit
much better tail latency characteristics.
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7. CONCLUSION

This paper presents a novel approach to training DNNs for
hybrid systems which compares advantageously in terms of
decoding complexity at equivalent accuracy to the standard
approach. The method uses shared hidden layers across mul-
tiple output frames, making it possible to run the inference
at a lower frame rate than the decoder while maintaining the
same performance.
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