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Abstract
Learning an acoustic model directly from the raw waveform
has been an active area of research. However, waveform-
based models have not yet matched the performance of log-
mel trained neural networks. We will show that raw wave-
form features match the performance of log-mel filterbank ener-
gies when used with a state-of-the-art CLDNN acoustic model
trained on over 2,000 hours of speech. Specifically, we will
show the benefit of the CLDNN, namely the time convolution
layer in reducing temporal variations, the frequency convolution
layer for preserving locality and reducing frequency variations,
as well as the LSTM layers for temporal modeling. In addition,
by stacking raw waveform features with log-mel features, we
achieve a 3% relative reduction in word error rate.

1. Introduction
Building an appropriate feature representation and designing an
appropriate classifier for these features have often been treated
as separate problems in the speech recognition community. One
drawback of this approach is that the designed features might
not be best for the classification objective at hand. Deep Neu-
ral Networks, and their variants, can be thought of as perform-
ing feature extraction jointly with classification. For example,
[1] showed that the activations at lower layers of DNNs can be
thought of as speaker-adapted features, while the activations of
the upper layers of DNNs can be thought of as performing class-
based discrimination. For years, speech researchers have been
using separate modules for speaker adaption and discriminative
training for Gaussian Mixture Model (GMM) training [2]. One
reason we believe DNNs are more powerful than GMMs is that
this feature extraction is done jointly with the classification,
such that features are tuned to the classification task at hand,
rather than separately before classification.

However, to date the most popular feature to train DNNs,
and their variants, are log-mel features. The mel filter bank is
inspired by auditory and physiological evidence of how humans
perceive speech signals [3]. We argue that a filter bank that is
designed from perceptual evidence is not always guaranteed to
be the best filter bank in a statistical modeling framework where
the end goal is word error rate.

To address this issue, there have been various attempts to
use an even simpler feature representation with neural networks,
namely the raw waveform, and to learn a filters to process the
raw waveform jointly with the rest of the network [4, 5, 6, 7].
The benefit of this approach is that the filters are learned for
the classification objective at hand. These previous papers
have looked at both supervised and unsupervised approaches to
learning from the raw waveform, but none thusfar have shown
improvements over a log-mel trained neural network 1.

1[5] showed improvements against a DNN baseline using MFCC

One of the difficulties in modeling the raw waveform is
that perceptually and semantically identical sounds can appear
at different phase shifts, so using a representation that is in-
variant to small phase shifts is critical. Past work has achieved
phase invariance using convolutional layers which pool in time
[4, 5, 7] or DNN layers with large, potentially overcomplete,
hidden units [6], which can capture the same filter shape at a
variety of phases.

Long Short-Term Memory (LSTM) Recurrent Neural Net-
works [8] are good for sequential tasks, and could be useful in
modeling longer term temporal structure. The problem with us-
ing an LSTM directly on the raw waveform is that 25ms of data,
which is a typical frame duration in feature extraction for speech
recognition, corresponds to 400 samples at a 16kHz sampling
rate. Modeling the time-domain sequence sample-by-sample
would require unrolling the LSTM for an infeasibly large num-
ber of time steps. Therefore, we propose to still use a convolu-
tion in time approach that is inspired by the frequency-domain
mel filterbank similar to [7], to model the raw waveform on the
short frame-level timescale. The output from this layer is then
passed to a powerful acoustic model, namely a Convolutional,
Long Short-Term Memory Deep Neural Network (CLDNN)
[9]. The CLDNN performs frequency convolution to reduce
spectral variance, long-term temporal modeling with the LSTM
layers, and discrimination with the DNN layers. We train the
raw time convolution layer jointly with the CLDNN.

Our experiments on raw waveform CLDNNs are conducted
on ∼2,000 hours of English Voice Search data. We find that
the raw waveform CLDNN matches the performance of log-
mel CLDNN after both cross-entropy and sequence training. To
our knowledge, this is the first work which is able to match the
performance of raw waveform and log-mel on an LVCSR task
using a strong baseline acoustic model. In addition, we analyze
the importance of the CLDNN architecture for raw waveforms.
Specifically, we find that if we use an acoustic model that re-
moves the convolution in time or LSTM layers, the log-mel
acoustic model is better in performance over the raw waveform
acoustic model, showing the importance of CNN and LSTM
layers. We also analyze the learned filters and find that the log-
mel and raw waveform filters are complementary, and further
improvements can be obtained by combining these streams.

2. Raw Waveform CLDNN Architecture
2.1. Time-domain Raw Waveform Processing

The first layer in our architecture is a time-convolutional layer
over the raw time-domain waveform, which can be thought of as
a finite impulse-response filterbank followed by a nonlinearity.
Such a layer is capable of approximating standard filterbanks
[7], such as a gammatone filterbank, which for speech appli-

features, but their proposed raw waveform model was a stronger CNN.



cations is often implemented as a bank of filters followed by
rectification and averaging over a small window. Because our
time-convolutional layer can do this (and as we will show, does
in fact do this), we will subsequently refer to the output of this
layer as a “time-frequency” representation, and we will assume
that the outputs of different convolutional units correspond to
different “frequencies.”

Our time convolution layer is shown in Figure 1a. First, we
take a small window of the raw waveform of length M samples,
and convolve the raw waveform with a set of P filters. If we
assume each convolutional filter has length N and we stride the
convolutional filter by 1, the output from the convolution will
be (M −N + 1) × P in time × frequency. Next, we pool the
filterbank output in time (thereby discarding short term phase
information), over the entire time length of the output signal,
to produce 1 × P outputs. Finally, we apply a rectified non-
linearity, followed by a stabilized logarithm compression2, to
produce a frame-level feature vector at time t, i.e., xt ∈ <P .
We then shift the window around the raw waveform by a small
amount (i.e., 10ms) and repeat this time convolution to produce
a set of time-frequency frames at 10ms intervals.

Convolution 
N x P weights 

Input 
M samples 

Max pooling 
M-N+1 window 
 

Nonlinearity 
log(ReLU(...)) 

1 X P 

convolution output 
(1 x P) 

 

 

nonlinearity output 
(1 x P) 

(a) Time-domain Convolution
Layer

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform

M samples

xt ∈ ℜP

(b) Time convolution and
CLDNN Layers

Figure 1: Modules of the raw waveform CLDNN

2.2. CLDNN

As shown in Figure 1b, the output out of the time convolutional
layer (tConv) produces a frame-level feature, denoted as xt ∈
<P . This feature is then passed to a CLDNN acoustic model
[9], which predicts context dependent state output targets.

First, the fConv layer does frequency convolution to reduce
spectral variations in xt. The architecture used for the convo-
lutional layer is similar to that proposed in [10] 3. Specifically,
we use 1 convolutional layer, with 256 feature maps. We use an
8x1 frequency-time filter for the convolutional layer. Our pool-
ing strategy is to use non-overlapping max pooling, and pooling
in frequency only is performed with a pooling size of 3 [11].

After frequency convolution, we pass the CNN output to
LSTM layers, which are appropriate for modeling the signal

2We use a small additive offset to truncate the output range and avoid
numerical problems with very small inputs: log(·+ 0.01).

3Note we do not pass feature xt with temporal context as we found
this not to help on larger data sets.

across long time scales. We use 3 LSTM layers, each with 832
cells, and a 512 unit projection layer for dimensionality reduc-
tion [12]. Finally, we pass the output of the LSTM to one fully
connected DNN layer, which has 1,024 hidden units.

The time convolution layer is trained jointly with the rest
of the CLDNN. During training, the raw waveform CLDNN is
unrolled for 20 time steps for training with truncated backprop-
agation through time (BPTT). In addition, the output state label
is delayed by 5 frames, as we have observed that information
about future frames helps to better predict the current frame [9].

3. Experimental Details
Our main experiments are conducted on ∼2,000 hours of noisy
training data consisting of 3 million English utterances. This
data set is created by artificially corrupting clean utterances
using a room simulator, adding varying degrees of noise and
reverberation such that the overall SNR is between 5dB and
30dB. The noise sources are from YouTube and daily life noisy
environmental recordings. All training sets are anonymized
and hand-transcribed, and are representative of Google’s voice
search traffic. Models trained on the noisy test set are evalu-
ated on a noisy test set containing 30,000 utterances (over 20
hours). To understand the behavior of raw waveform CLDNNs
on different data sets, we also run experiments training on a
clean 2,000-hour data set (analogous to our noisy training set
but without any corruption), and a larger 40,000 hour noisy set
which uses the same clean data transcripts as the 2,000 hour set
but adds 20 distinct noise signals from the room simulator to
each clean utterance. Results are reported in matched condi-
tions, meaning models trained in clean conditions are evaluated
on a clean 20 hour test set, while models trained in noisy condi-
tions are evaluated on a noisy test set.

The CLDNN architecture and training setup follow a sim-
ilar recipe to [9]. Specifically, the input features for all base-
line models are 40-dimensional log-mel filterbank features,
computed every 10ms. Unless otherwise indicated, all neu-
ral networks are trained with the cross-entropy criterion, using
asynchronous stochastic gradient descent (ASGD) optimization
[13]. The sequence-training experiments in this paper also use
distributed ASGD, which is outlined in more detail in [14]. All
networks have 13,522 CD output targets. The weights for all
CNN and DNN layers are initialized using the Glorot-Bengio
strategy described in [15], while all LSTM layers are uniform
randomly initialized to be between -0.02 and 0.02. We use a
exponentially decaying learning rate, which starts at 0.004 and
has a decay rate of 0.1 over 15 billion frames.

4. Results
4.1. Initial Experiments

Our initial experiments seek to understand the appropriate filter
size and initialization for the time-domain convolutional layer.
Since our baseline 40-dimensional log-mel features are com-
puted with a 25ms window and 10ms shift, we use an identical
time-domain filter size with P = 40 time-convolutional filters.

Table 1 shows results. First, notice that if the filter size is the
same as the window size, and thus we do not pool in time, the
WER is very high (19.9%). However, if we use a slightly larger
window size (35ms) which allows us to pool in time and obtain
invariance to time shifts, we can improve WER to 16.4%. While
one can argue that phase variations can be captured using a large
enough number of hidden units, as done in [6], a time-domain
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Figure 2: Filterbank magnitude responses on different datasets. fbreak indicates the frequency at which these standard auditory scales
switch from linear to logarithmic.

convolution is attractive as it does not increase parameters over
the system without pooling.

Second, the table shows that we can improve performance
slightly, from 16.4% to 16.2% by initializing the time-domain
convolution parameters to have gammatone impulse responses
[16] with center frequencies equally spaced on an equivalent
rectangular bandwidth (ERB) scale [17], rather than random ini-
tialization. This differs from previous work [6, 7] which showed
gammatone initialization performed the same as random initial-
ization. We hypothesize (and will experimentally show later)
that the frequency convolutional layer in the CLDNN depends
on inputs having locality and ordering in frequency. Therefore,
initializating the time-domain convolutional layer preceeding
this with weights that have locality and ordering in frequency
puts the weights in a much better space. Finally, we find that
not training the time-convolutional layer is slightly worse than
training this layer. This shows the benefit of adapting filters for
the objective at hand, rather than using hand-designed filters.

Filter Window Init WER
Size (N (ms)) Size (M (ms))
400 (25ms) 400 (25ms) random 19.9
400 (25ms) 560 (35ms) random 16.4
400 (25ms) 560 (35ms) gammatone 16.2
400 (25ms) 560 (35ms) gammatone 16.4

untrained

Table 1: WER for Raw waveform CLDNNs

4.2. Further Time Convolution Experiments

Since our time-convolution layer is similar to time-domain fil-
tering, in this section, we explore applying specific operations
used in time-domain processing to raw waveform CLDNNs.

4.2.1. Dynamic Range Compression

Time-filtered gammatone features have been shown to work
better with a 10th-root compression compared to a logarithmic
compression [18]. We trained networks using both logarithmic
and 10th-root nonlinearities and obtained identical WER of 16.2
with both nonlinearities. Our hypothesis is that the millions of
weights in the CLDNN after the compression layer can learn to
account for small differences between compression schemes.

4.2.2. Different Pooling Strategies

Furthermore, gammatone features can be computed by taking
a time-domain average over a larger window size (i.e., 35ms)
[19]. Since pooling is a generalization of time-domain averag-
ing, we compare 3 different pooling operations, namely max,

l2 and average. Table 2 shows that max pooling performs the
best. One hypothesis we have is that max pooling emphasizes
transients which other pooling functions smooth out.

Method WER
max 16.2
l2 16.4

average 16.8

Table 2: WER with Different Pooling Strategies

4.3. Comparison to Log-mel

We next compare raw waveform CLDNNs to log-mel CLDNNs.
To be complete we present results for both cross-entropy and
sequence training. In addition, we also show results on both
clean and noisy voice search tasks, where results are evaluated
in matched noise conditions as described in Section 3.

As Table 3 indicates, log-mel and raw waveform CLDNN
performance is similar for both clean and noisy speech after
sequence training. To our knowledge, this is the first time it
has been shown experimentally that raw waveform and log-mel
features match in performance [4, 5, 6, 7]. To understand these
results better, in the next section, we explore why raw waveform
CLDNNs now match log-mel CLDNNs.

Training Set Feature WER - CE WER - Seq
Clean log-mel 14.0 12.8
Clean raw 13.7 12.7
MTR log-mel 16.2 14.2
MTR raw 16.2 14.2

Table 3: Final WER Comparisons

4.4. Analysis of Results

To understand better why raw waveform CLDNNs match log-
mel CLDNNs, we first explore whether the improvements are
due to a stronger acoustic model (i.e., CLDNN), as past work
looked at only DNNs and CNNs [4, 5, 6, 7]. Table 4 shows
the WER for different architectures for both raw waveform and
log-mel features. The terminology CxLyDz is used to indicate
having x frequency convolutional, y LSTM and z DNN lay-
ers. Note that the raw waveform layer always has a time con-
volutional layer, which is initialized with gammatone impulse
responses unless otherwise noted.

First, as stated in the previous section, the architecture
C1L3D1 has the same 16.2% WER for both raw waveform and
log-mel features. If we remove the convolution layer (L3D1),
there again is no difference between log-mel and raw waveform,
both have a WER of 16.5%. However, if we randomly initialize



the time convolution layer, there is no difference in WER com-
pared to gammatone initialization. This contrasts with results in
Table 1, which showed that when using a frequency convolution
layer, initialization of the time convolution layer was important
to preserve locality in frequency. One explanation of why log-
mel CLDNNs match raw waveform CLDNNs is because the
frequency convolutional layers require a frequency-ordered rep-
resentation coming out of the time convolution layer.

Second, notice that as we reduce the number of LSTM lay-
ers, the gap between log-mel and raw waveform starts to in-
crease once we have fewer than 2 LSTM layers. As described
above, the time domain filtering preserves small variations in
time (and phase), so we pool to reduce these variations, as in
the results in Table 1. However, pooling at this level may not
provide invariance on all relevant time scales. We believe using
LSTMs can help to further reduce variations to phase shifts.

Feature Model WER
log-mel C1L3D1 16.2

raw C1L3D1 16.2
log-mel L3D1 16.5

raw L3D1 16.5
raw L3D1, rand init 16.5

log-mel C1L2D1 16.6
raw C1L2D1 16.6

log-mel C1L1D1 17.3
raw C1L1D1 17.8

log-mel D6 22.3
raw D6 23.2

Table 4: WER for Different CLDNN Architectures

We also test varying the amount of training data to see
if improvements from raw CLDNNs is also coming from in-
creased amount of data, as hypothesized in [6]. Table 5 does
indeed indicate that the gap between raw waveform and log-mel
CLDNNs narrows with increased training data.

Hrs WER-raw WER-log-mel
666 18.8 18.4

1,333 17.1 17.3
2,000 16.2 16.2

40,000 15.5 15.4

Table 5: WER for Different Amounts of Data

4.5. Learned Features

In this section, we analyze the raw waveform time convolution
layer, and compare the features learned in the proposed frame-
work to more traditional auditory-inspired speech frontends.

Figure 2 plots the magnitude response of the gammatone-
ERB filterbank initialization (left), and the filters obtained after
training our waveform CLDNN on 2,000 hours of noisy (cen-
ter) and clean (right) speech. The commonly used mel and ERB
frequency scales are also plotted for comparison. As in [7], we
find that the network learns auditory-like filterbanks of band-
pass filters whose bandwidth increase with center frequency.

After training, the filters are consistently different from
both the ERB gammatone initialization and the mel scale, giv-
ing more resolution (more filters with lower bandwidths) to low
frequencies – the mel scale uses only about 30 filters below 4
kHz, whereas the trained filterbanks use closer to 35 filters in
this range. This makes sense since there high frequency regions

are dominated by mainly fricatives. As we will show later, these
learned filters are complementary to log-mel.

Figure 3 analyzes the center frequencies (bin index contain-
ing the peak response) of filters trained on different datasets
and initialized differently. The figure highlights that filterbank
learning consistently devotes more filters to low frequencies
across different datasets and training methods, though they be-
gin to diverge at higher center frequencies. Notable is the “gam-
matone clean” filterbank, which consistently uses more filters
for lower frequencies than filterbanks trained on noisy signals.
This might indicate that the high frequency energy is more in-
formative in noisy conditions in helping discriminate speech
from background. These results show how filterbank training
can adapt available capacity to match the training data.
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Figure 3: Center frequencies of different filterbanks.

4.6. Raw + Log-Mel

Given the complementarity between learned and log-mel filter-
banks shown in the previous section, we compare WER when
we combine both feature streams as input into the CLDNN
(training from scratch). Table 6 shows that after sequence train-
ing, the combined system achieves a 3% relative improvement
in WER over log-mel CLDNN or raw-CLDNN alone.

Feature WER - CE WER - Seq
raw 16.2 14.2

log-mel 16.2 14.2
raw+log-mel 15.7 13.8

Table 6: WER Combining Raw and Log-Mel Features

5. Conclusions
We presented an approach to learn directly from the raw wave-
form using a sophisticated acoustic model (CLDNN) and a large
amount of training data. We showed that with these improve-
ments, raw waveform CLDNNs match the performance of log-
mel CLDNNs on both a clean and noisy Voice Search task. Fur-
thermore, combining log-mel and raw waveform streams results
in a 3% relative improvement in WER.
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